Принцип работы и обозначение электрических дросселей на схемах

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Принцип работы и обозначение электрических дросселей на схемах

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Принцип работы и обозначение электрических дросселей на схемах

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Разновидность дросселей

Люминесцентные лампы представлены на рынке большим ассортиментом. И у каждого вида ламп дневного света свой дроссель трансформатор. К примеру, лампа ДРЛ и ДНАТ не могут зажигаться от одного вида дросселя. Все дело в различных параметрах пуска и поддержания горения. Здесь и напряжение отличается, и сила тока.

А вот лампа МГЛ может работать и от дросселя лампы ДРЛ, и от ДНАТ. Но тут есть один момент. Яркость свечения данного источника света будет зависеть от подаваемого напряжения. Да и цветовая температура будет разной.

Принцип работы и обозначение электрических дросселей на схемах

Но учитывать приходится тот факт, что лампа с годами «стареет». На вольфрамовые электроды люминесцентных ламп дневного света наносится специальная паста из щелочных металлов. Так вот эта паста постепенно испаряется, электроды оголяются, а, значит, повышается напряжение, что приводит к перегреву дросселя. Конечный результат может быть двух вариантов:

  1. Произойдет обрыв обмотки катушки, что приведет к отключению подачи напряжения на электроды.
  2. Произойдет замыкание катушки. А это подключение лампы напрямую к сети переменного тока. Лампа перегорит – это точно, а может и взорваться, что приведет к порче светильника в целом.

Поэтому совет – не стоит ждать, когда лампа сама перегорит. Есть специальный график замены, который определяет производитель, и которого необходимо строго придерживаться. Опытные электрики при проведении профилактических работ обязательно проверяют эти осветительные приборы на параметр напряжения. Если он подходит к пределу нормы, то лампу меняют еще до срока эксплуатации. Лучше заменить недорогую лампу, чем дорогой дроссель трансформатор.

Принцип работы и обозначение электрических дросселей на схемах

Добавим, что производители сегодня предлагают усовершенствованные системы защиты люминесцентных светильников. В их конструкцию добавили предохранительные автоматы, которые срабатывают при повышении напряжения внутри газоразрядного источника света.

Разделение по назначению

По сути, все дроссели делятся на две основные группы, как и лампы, в которых они устанавливаются.

  1. Однофазные. Их используют в светильниках бытовых и офисных с подключением к сети в 220 вольт.
  2. Трехфазные. Подключаются к сети 380 вольт. К ним относятся лампы ДРЛ и ДНАТ.

По месту установки эти приборы делятся также на две группы:

  1. Встраиваемые. Их еще называют открытыми. Такие дроссели устанавливают в корпус светильника, который защищает его и от влаги, и от пыли, и от ветра.
  2. Закрытые (герметичные, влагозащищенные). У этих приборов есть специальный короб, защищающий их. Такие модели можно устанавливать на улице под открытым небом.

Принцип работы и обозначение электрических дросселей на схемах

Что такое дроссель и для чего он нужен

11.03.2016 нет комментариев 38 317 просмотров

В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.

Принцип работы и конструктивные особенности

Для начала остановимся на основных компонентах, входящих в этот компонент цепи и разберемся, как осуществляется процесс работы. В графическом виде схема дросселя выглядит следующим образом:

Визуально может наблюдаться большой диапазон модификаций. Самые распространенные видны на фото:

Принцип работы и обозначение электрических дросселей на схемах

Давайте выберем вариант катушки, имеющей сердечник с магнитопроводом, на который наматывается проволока. При наличии очень высоких частот корпус отсутствует. Можно говорить о некоторой идентичности с трансформатором с одной обмоткой. Даже элементарные познания в физике свидетельствуют, что мгновенное изменение тока в катушке невозможно. Представим себе виртуальный опыт – у нас имеется в распоряжении осциллограф, источник, вырабатывающий переменный ток и дроссель.

Принцип работы и обозначение электрических дросселей на схемах

Нарастание показателей тока с некоторым опозданием наблюдается на начальном этапе полуволны. Подобное явление – следствие происходящего в сердечнике индуцирования магнитного потока. Нарастание тока в обмотках в такой ситуации всегда происходит постепенно. А спад тока в дросселе происходит в момент ухода на спад сигнала с источника, причем снова можно заметить аналогичное опоздание. В магнитопроводе продолжается толкание тока, осуществляемое магнитным полем, вследствие чего невозможно быстрое изменение направления. Все описанное можно корректно охарактеризовать, как процесс противодействия тока из внешнего источника имеющемуся току, который наведен магнитопроводом дросселя. Основная функциональная обязанность дросселя в схемах цепей переменного тока – выполнение ограничений или проявление себя в качестве индуктивного сопротивления.

А вот оставаться регулирующим элементом или сопротивлением в случае с постоянным током не получится. Описанный принцип применяется для ситуаций с устройствами, требующими выполнить ограничение тока до заданных параметров, соблюдая нормативы по габаритам и минимальному выделению тепла.

На размещенном видео подробно описываются основные аспекты данного вопроса.

Теоретические моменты показаны здесь:

Разновидности устройств

Люминесцентные лампы выпускаются в разнообразных формах. Они подразделяются на:

  • трубчатые;
  • кольцевые;
  • U-образные;
  • ультрафиолетовые;
  • компактные.

Принцип работы и обозначение электрических дросселей на схемах

Трубчатые лампы имеют форму, схожую с прямой трубкой. Распознать эти изделия довольно легко по трубчатой форме цоколя. Размеры люминесцентных ламп маркируются буквой «Т» и цифрой, которая обозначает диаметр, равный 1/8 части дюйма.

Так, диаметр люминесцентной лампы Т4 будет составлять 13 мм (25,4*4:8). Если необходимо приобрести лампочку диаметром 26 мм, то подойдет изделие с маркировкой Т8.

Кольцевые люминесцентные источники света отличаются цоколем, который состоит из четырех штырей. В зависимости от диаметра колец лампы бывают трех размеров.

U-образные лампы представляют собой устройства, которые обладают небольшой длиной, а цоколи располагаются только с одной стороны.

Ультрафиолетовые изделия являются альтернативным решением лампам накаливания. Основная сфера применения — в биологических и фотохимических облучателях.

Основное отличие компактных люминесцентных ламп — небольшой размер. В некоторых случаях эти источники света при продаже обозначаются буквами «ККЛ». Благодаря минимальной температуре нагрева данный вид ламп применяется в люстрах и светильниках.

Сфера применения

Основное предназначение дросселя состоит в оптимизации эксплуатационного режима люминесцентных ламп. Происходит ограничение до необходимых показателей тока через колбу, чтобы предотвратить его излишнее увеличение при прохождении внутри лампы.

Принцип работы и обозначение электрических дросселей на схемах

Основные компоненты такого светильника – это стартер, дроссель и сама лампа. Коротко о работе данного устройства расскажем ниже.

На одну из нитей накала поступает через дроссель сетевой ток. Следующее протекание происходит в такой последовательности – переход на стартер, затем на другую нить и в завершение выполняется уход в сеть. Тлеющий разряд газа нагревает биметаллическую пластину в стартерном устройстве. Вследствие этого пластина выпрямляется, что приводит к замыканию цепи.

Синхронно происходит запуск работы нитей накала. Расположенные на концах светильника такие элементы  повышают температуру паров ртути. Пластины стартера через небольшой отрезок времени остывают и снова пребывают в исходном положении. Пиковый всплеск величины напряжения в дросселе наблюдается в момент разрыва цепи, в колбе образуется пробой газа, способствующий возникновению тлеющего разряда. Образуется свечение лампочки, шунтирующей стартер, выключение которого из цепи провоцирует пониженное сопротивление.

В моделях современного исполнения такой элемент также присутствует. Но в подобных экономичных образцах благодаря высоким частотам он имеет максимально компактные размеры. Его назначение и особенности работы при этом остаются неизменными.

Принцип работы и обозначение электрических дросселей на схемах

Металлогалогеновые лампочки CDM, модели ДРЛ, натриевые светильники ДНАТ также в обязательном порядке имеют встроенные дроссели.

Принцип работы и обозначение электрических дросселей на схемах

Блокировка значительных всплесков от трансформатора с получением на выходе сглаженного напряжения – назначение данных элементов блоках питания импульсного типа. Иногда такую работу сравнивают с выполнением функций фильтров.

Реакторами называю данные устройства, устанавливаемые в электросетях. Избежать образования самостоятельной дуги в случае короткого замыкания на землю однофазного типа – главное функциональное предназначение дугогасительных реакторов. Приблизительно такие же обязанности лежат и на других разновидностях подобных устройств, выполняющих во время форсмажорных ситуаций работу по ограничению и регулированию параметров тока.

Значительно улучшить эксплуатационные свойства самодельного аппарата для сварки или недорогой модели достаточно просто – потребуется его установка во вторичную цепь при помощи дросселя. Поверьте, что вы практически не почувствуете различий с фирменным аппаратом, если изготовите трансформатор для сварки со встроенным дросселем. При работе гарантируется равномерная заливка шва и качественная дуга.

Принцип работы и обозначение электрических дросселей на схемах

Значительно улучшиться процесс поджигания дуги, а на ее горение перестанет негативно влиять просадка напряжения в сети. Многие пользователи отмечают отличные результаты сварки даже при отсутствии опыта в проведении подобных работ.

Еще одно видео об особенностях таких изделий:

Теперь разобраться со спецификой применения, всеми нюансами назначения и принципов работы значительно проще. Такая информация будет хорошим подспорьем при решении многих бытовых задач.

← Предыдущая страница
Следующая страница →

Удаление дросселя и стартера

Данную процедуру можно совершить и при перегорании лампы. Причинами данного явления могут быть:

  • сгорание колбы;
  • сгорание пускового устройства.

Определить причину можно по внешнему виду люминесцентной лампы. Наличие потемневших концов свидетельствует о том, что произошло сгорание колбы. Если колба не потемнела, то, возможно, произошло перегорание пусковой схемы.

Принцип работы и обозначение электрических дросселей на схемах

Чтобы выяснить это, лампу необходимо разобрать. Для этого используется нож или отвертка. Данная процедура осуществляется очень аккуратно, поскольку колба может в руках лопнуть. Не нужно прилагать огромных усилий.

Открыв лампу, внимательно рассматривается пусковой механизм. Обычно внутри лампы проходит шесть проводов:

  • два питающих, идущих к схеме от цоколя;
  • четыре, соединяющихся с колбой и расположенных попарно по краям платы.

Отсутствие на схеме копоти и нагара или расплавленных проводов говорит о том, что схема является рабочей. Скорее всего, перегорела колба.

Дальнейшие действия заключаются в следующем:

  • с помощью кусачек изымается схема;
  • на плате должна остаться большая часть проводков;
  • для проверки работоспособности схемы берется работающая лампа, идентичная по мощности;
  • четыре проводка, которые соединялись с колбой, удлиняются, присоединяются к работающей лампе и изолируются;
  • два питающих провода тоже удлиняются и подключаются к сети;
  • если лампа загорелась, то схема является рабочей;
  • удаляем из старой лампы стартер и дроссель;
  • устанавливаем схему на свое место.

Еще одной из неисправностей люминесцентной лампы может быть обрыв вольфрамовой нити. При включенном источнике света нить нагревает газ, а люминофор начинает светиться. С течением времени  вольфрам понемногу испаряется и оседает на стенках светильника.

Целостность вольфрамовой нити проверяется с помощью обычного тестера, которым измеряют сопротивление проводников. Если при соприкосновении с выводными концами люминесцентной лампы шкала прибора показывает сопротивление 9,9 Ом, то это свидетельствует об исправности нити. Если показания прибора равняются нулю, то существует обрыв нити.

Основной причиной обрыва вольфрамовой нити является ее истончение в результате возрастающего напряжения, которое проходит сквозь нее. Увеличение напряжение негативно воздействует и на стартер, из-за чего лампа начинает моргать.

Видео о подключении люминесцентной лампы:

Электронные аналоги

Основная масса дросселей – это достаточно габаритные приборы. Чтобы уменьшить их размеры, но при этом не изменять параметров, необходимо заменить катушку индуктивности полупроводниковым стабилизатором, который, в принципе, собой представляет высокой мощности транзистор. То есть в конечном итоге получается электронный дроссель.

По сути, установленный транзистор стабилизирует скачки (колебания) напряжения, уменьшают его пульсацию. Но придется учитывать тот факт, что электронный дроссель является все-таки полупроводниковым устройством. Так что в высокочастотных приборах его использовать нет смысла.

Как и многие электронные приборы, дроссели маркируются в зависимости от своих параметров. Это достаточно сложная аббревиатура, которая неопытным электрикам будет непонятна. Поэтому была введена цветовая маркировка. То есть, на приборе нанесено несколько цветных колец, которые определяют индуктивность устройства. Первых два кольца – это номинальная индуктивность, третье – это множитель, четвертое – это допуск.

Принцип работы и обозначение электрических дросселей на схемах

Цветовая маркировка удобна, особенно для тех, кто начинает разбираться в области электрики. С ее помощью можно точно подобрать параметры устанавливаемых приборов (транзистор, электронный дроссель, резистор и так далее).

Неисправности электронной педали газа

Принцип работы и обозначение электрических дросселей на схемах

В электронной системе предусмотрена контрольная лампа EPC, которая загорается на приборной панели при наличии какой-либо неисправности в системе или при нарушении её работы. Если сигнал с датчиков перестанет приходить или будет приходить неверным, эта лампа оповестит вас об этом.

В приводном механизме педали газа размещены 2 датчика — это потенциометры со скользящим контактом, эти контакты соприкасаются с контактными дорожками. Один датчик нужен для того, чтобы отправлять информацию о положении педали. Второй является контрольным и также передаёт информацию.

При изменении положения педали газа происходит изменение сопротивления этих датчиков, электронный блок «видит» это по изменению значения напряжения.

Если возникают какие-то неполадки, то как правило нужно заменить один или оба датчика, а также проверить контакт между датчиком и дорожками. Бывает, что на эти дорожки попадает грязь или пыль и нужного контакта не достагается. В этом случае их необходимо хорошо почистить.

При отсутствии сигнала с одного датчика положения педали газа:

  • регистрируется неисправность, включается контрольная лампа EPC
  • работа на холостых оборотах до того момента, пока система не опознает работоспособность второго датчика
  • после проверки и получения сигнала со второго датчика можно ехать дальше
  • при нажатии на педаль газа до упора обороты будут расти медленно
  • система будет пытаться себя «подстраховать», определяя холостой ход по сигналам торможения и положению педали тормоза
  • отключатся дополнительные системы, влияющие на работу двигателя — круиз-контроль

При отсутствии сигналов с двух датчиков положения педали газа одновременно:

  • регистрируется неисправность, включается контрольная лампа EPC
  • на педаль газа не реагирует
  • на холостом ходу обороты повышены до 1500 об/мин

При отсутствии сигнала с одного датчика положения дроссельной заслонки:

  • регистрируется неисправность, включается контрольная лампа EPC
  • отключается круиз-контроль и принудительный холостой ход
  • нормально реагирует на педаль газа

При отсутствии сигнала с обоих датчиков положения дроссельной заслонки:

  • выключается привод заслонки
  • на педаль газа не реагирует
  • холостые обороты повышены до 1500 об/мин

Таким образом, по симптомам можно определить, какой именно датчик вышел из строя. Если вы разбираетесь в электрике, можно заменить их самостоятельно. Иначе лучше доверить это специалистам. Диагностика в автосервисе покажет точную причину.

Как проверить датчик ДМРВ

Схема

За основу ИИП взята типовая схема разработчика микросхем для ряда TinySwitch-ll (рис. 1), особенностей она не имеет. Чертёж возможного варианта печатной платы устройства показан на рис. 2. Она изготовлена из фольгированного с одной стороны стеклотекстолита и рассчитана на установку как диодов 1N4007, так и диодного моста DB107.

Принцип работы и обозначение электрических дросселей на схемах

Рис. 1. ПРинципиальная схема источника питания.

Из-за необходимости минимизации размеров платы (для установки в корпус неисправного ЗУ от сотового телефона) в качестве R4-R7 применены резисторы для повехностного монтажа, резисторы R1 и R2 заменены одним (МЛТ или подобным сопротивлением 4,7 МОм и мощностью рассеяния 0,5 Вт), а вместо двухобмоточного дросселя L1 во входной цепи применён обычный малогабаритный L1 (изображён на схеме штриховыми линиями), включённый в плюсовую цепь. Даже без подбора резисторов делителя выходное напряжение составило 4,98 В, и при токе до 1 А какой-либо существенной просадки напряжения не наблюдалось.

Включение выпрямительного диода VD7 в минусовую цепь оказалось оправданным, упростив разводку проводников на печатной плате. Цепи, аналогичные R3C5, в любительских разработках встречаются редко, но рекомендую её установить, так как она повышает надёжность работы выпрямительного диода.

Для чего нужен стартер и дроссель в схемах включения люминесцентных ламп

Основными элементами схемы включения люминесцентной лампы с электромагнитным ПРА являются дроссель и стартер. Стартер это миниатюрная неоновая лампа, один или оба электрода которой выполнены из биметалла. При возникновении тлеющего разряда внутри стартера биметаллический электрод нагревается и, затем изгибаясь, накоротко смыкается со вторым электродом.

После подачи напряжения на схему ток через люминесцентную лампу не течет, так как газовый промежуток внутри лампы это изолятор, и для пробоя его нужно напряжение, превышающее напряжение питающей сети. Поэтому загорается только лампочка стартера, напряжение зажигания которой ниже сетевого. Ток величиной 20 – 50 мА течет по дросселю, электродам люминесцентной лампы, неоновой лампе стартера.

Стартер состоит стеклянного баллона, наполненного инертным газом. В баллон впаяны металлический неподвижный и биметаллический электроды, имеющие выводы, проходящие через цоколи. Баллон заключен в металлический или пластмассовый корпус с отверстием в верхней части.

Схема устройства стартера тлеющего разряда: 1 — выводы, 2 – металлический подвижный электрод, 3 — стеклянный баллон, 4 — биметаллический электрод, 6 — цоколь

Стартеры для включения люминесцентных ламп в сеть выпускаются на напряжение 110 и 220 В.

Под воздействием тока электроды стартера разогреваются и замыкаются. После замыкания по цепи течет ток, превышающий в 1,5 раза номинальный ток лампы. Величина этого тока ограничена в основном сопротивлением дросселя, так как электроды стартера замкнуты, а электроды ламп имеют незначительное сопротивление.

Принцип работы и обозначение электрических дросселей на схемах

Элементы схемы с дросселем и стартером: 1 – зажимы сетевого напряжения; 2 – дроссель; 3, 5 – катоды лампы, 4 – трубка, 6, 7 – электроды стартера, 8 – стартер.

Принцип работы и обозначение электрических дросселей на схемах

За 1 – 2 с электроды лампы разогреваются до 800 – 900 °С, вследствие этого увеличивается электронная эмиссия и облегчается пробой газового промежутка. Электроды стартера остывают, так как разряда в нем нет.

При остывании стартера электроды возвращаются в исходное состояние и разрывают цепь. В момент разрыва цепи стартером возникает э. д. с. самоиндукции в дросселе, величина которой пропорциональна индуктивности дросселя и скорости изменения тока в момент разрыва цепи. Образовавшееся за счет э. д. с. самоиндукции повышенное напряжение (700 – 1000 В) импульсом прикладывается к лампе, подготовленной к зажиганию (электроды разогреты). Происходит пробой, и лампа начинает светиться.

К стартеру, который включен параллельно лампе, прикладывается приблизительно половина напряжения сети. Этой величины недостаточно для пробоя неоновой лампочки, поэтому она больше не зажигается. Весь период зажигания длится меньше 10 с.

Рассмотрение процесса зажигания лампы позволяет уточнить назначение основных элементов схемы.

Стартер выполняет две важные функции:

1) замыкает накоротко цепь для того, чтобы повышенным током разогреть электроды лампы и облегчить зажигание,

2) разрывает после разогрева электродов лампы электрическую цепь и тем самым вызывает импульс повышенного напряжения, обеспечивающего пробой газового промежутка.

Дроссель выполняет три функции:

1) ограничивает ток при замыкании электродов стартера,

2) генерирует импульс напряжения для пробоя лампы за счет э. д. с. самоиндукции в момент размыкания электродов стартера,

3) стабилизирует горение дугового разряда после зажигания.

Схема импульсного зажигания люминесцентной лампы в работе:

Сглаживающий дроссель

Сглаживающий дроссель предназначен для сглаживания тока нагрузки.

Внешние характеристики выпрямителя на номинальный ток 315 А.

Сглаживающий дроссель выполняется с воздушным зазором. Хорошие сварочные качества выпрямителя достигаются увеличением индуктивности дросселя, расчетная мощность которого должна быть близка к мощности трансформатора. Особенности расчета однофазных выпрямителей подробно исследованы в работе.

Сглаживающие дроссели ( СД) — компоненты преобразователей, предназначенные для уменьшения переменной составляющей напряжения или тока на входе или выходе преобразователя. Особенностью СД является присутствие в токе, проходящем через обмотку, как переменной, так и постоянной составляющей одновременно. После выбора материала сердечника требуется по исходным данным определить типоразмер сердечника из стандартного ряда, а затем необходимо выполнить конструктивный расчет дросселя.

Сглаживающие дроссели предназначены для ослабления пульсации выпрямленного напряжения. Как и любой трансформатор или дроссель переменного тока, сглаживающий дроссель состоит из магнитопровода и обмотки, но, в отличие от других устройств, магнитопровод сглаживающего дросселя имеет немагнитный промежуток.

Тепловая схема. РИС — 3 12.

Сглаживающие дроссели имеют, как правило, одну обмотку, и поэтому можно считать, что потери в ней распределены равномерно по всему объему катушки.

Сглаживающие дроссели используются для уменьшения пульсаций в цепях выпрямленного напряжения выпрямителей. Сглаживающий дроссель, как дроссель переменного тока, состоит из замкнутого магнитопрово-да и одной обмотки. Обмотка дросселя включается последовательно с нагрузкой и обтекается выпрямленным током.

Сглаживающие дроссели электрических фильтров, так же как и трансформаторы малой мощности, широко используются в выпрямительных устройствах радиотехнических установок. Поэтому вопрос об определении оптимальных соотношений размеров магнитопроводов сглаживающих дросселей и выборе их наивыгоднейшей конфигурации приобретает значительную актуальность.

Расчет сглаживающего дросселя заключается в выборе типоразмера сердечника и определении обмоточных данных катушки дросселя по заданной его индуктивности и величине тока подмагничивания.

Индуктивность сглаживающего дросселя дана. Индуктивность уравнительного реактора в рассматриваемой системе можно не учитывать, так как реакторы выбраны таким образом, что при токах / d l 5 / yp они насыщаются.

Нарастание тока короткого замыкания.| Зависимость индуктивности дросселя инвертора от тока нагрузки.

Индуктивность сглаживающего дросселя должна быть резко нелинейной. На рис. 4.126 приведена зависимость индуктивности дросселя инвертора ВДЧИ-252 от тока. Дроссель выполнен на ферритах 3000 НМС без воздушного зазора.

Конструкции сглаживающих дросселей в маломощных выпрямительных устройствах подобны конструкциям трансформаторов. Они так же, как и трансформаторы, могут быть выполнены на стержневых и броневых магнитопроводах.

Расчет сглаживающего дросселя на заданное превышение температуры заключается в выборе типоразмера сердечника и определении обмоточных данных катушки дросселя по заданной его индуктивности и величине тока подмагничивания таким образом, чтобы превышение температуры обмотки не превосходило заданного.

Список источников

  • elektroznatok.ru
  • www.ngpedia.ru
  • vmiredorog.ru
  • svetvtebe.ru
  • electricremont.ru
  • recn.ru
  • jelektro.ru
  • RadioStorage.net
Читайте так же:  Сообщества Лада Приора Lada Priora Club Блог Цоколь лампочки в приборке приоры
Ссылка на основную публикацию