Маркировка диодов

Переменные конденсаторы

Для обозначения конденсаторов с переменной емкостью используются два параллельных отрезка, которые пересекает наклонная стрелка. Подвижные пластины, подключаемые в определенной точке схемы, изображаются в виде короткой дуги. Возле нее проставляется обозначение минимальной и максимальной емкости. Блок конденсаторов, состоящий из нескольких секций, объединяется с помощью штриховой линии, пересекающей знаки регулировки (стрелки).

Маркировка диодов

Обозначение подстроечного конденсатора включает в себя наклонную линию со штрихом на конце вместо стрелки. Ротор отображается в виде короткой дуги. Другие элементы – термоконденсаторы обозначаются буквами СК. В его графическом изображении возле знака нелинейной регулировки проставляется температурный символ.

Обратное включение диода

Маркировка диодов

Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:

  1. Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
  2. Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
  3. По мере роста обратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название – ток насыщения.
  4. В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.

Тиристоры.

Трехэлектродные тиристоры(тринисторы) — полупроводниковые приборы, применяемые для регулирования
мощности в сетях переменного и постоянного токов.
Тиристор легко переходит из закрытого (непроводящего) состояния в открытое, при подаче на
управляющий электрод открывающего импульса. После того, как тиристор открыт, он остается
в таком состоянии, пока протекающий через него ток не снизится до определенного
порогового значения.


Маркировка диодов

При работе в цепях переменного тока, подобное снижение происходит с каждой сменой
полярности, при изменении фазы.
В цепях постоянного тока, для отключения используются специальные схемы.

Буквенные обозначение на схемах радиодеталей

Основное обозначение

Наименование элемента

Дополнительное обозначение

Вид устройства

А

Устройство

АА

Регулятор тока

АК

Блок реле

AKS

Устройство

В

Преобразователи

ВА

Громкоговоритель

BF

Телефон

ВК

Датчик тепловой

BL

Фотоэлемент

ВМ

Микрофон

BS

Звукосниматель

С

Конденсаторы

СВ

Батарея конденсаторов силовая

CG

Блок конденсаторов зарядный

D

Интегральные схемы, микросборки

DA

ИС аналоговая

DD

ИС цифровая, логический элемент

Е

Элементы разные

ЕК

Теплоэлектронагреватель

EL

Лампа осветительная

F

Разрядники, предохранители, устройства защитные

FA

Дискретный элемент защиты по току мгновенного действия

FP

То же, по току инерционного действия

FU

Предохранитель плавкий

FV

Разрядник

G

Генераторы, источники питания

GB

Батарея аккумуляторов

GC

Синхронный компенсатор

Возбудитель генератора

Н

Устройства индикационные и сигнальные

НА

Прибор звуковой сигнализации

HG

Индикатор

HL

Прибор световой сигнализации

HLА

Табло сигнальное

HLG

Лампа сигнальная с зеленой линзой

HLR

Лампа сигнальная с красной линзой

HLW

Лампа сигнальная с белой линзой

HV

Индикаторы ионные и полупроводниковые

К

Реле, контакторы, пускатели

КА

Реле токовое

КН

Реле указательное

КК

Реле электротепловое

КМ

Контактор, магнитный пускатель

КТ

Реле времени

KV

Реле напряжения

КСС

Реле команды включения

КСТ

Реле команды отключения

KL

Реле промежуточное

L

Катушки индуктивности, дроссели

LL

Дроссель люминесцентного освещения

LR

Реактор

LM

Обмотка возбуждения электродвигателя

М

Двигатели

МА

Электродвигатели

Р

Приборы измерительные

РА

РС

Счетчик импульсов

PF

Частотомер

PI

Счетчик активной энергии

PK

Счетчик реактивной энергии

PR

PT

Измеритель времени действия, часы

PV

Вольтметр

PW

Ваттметр

Q

Выключатели и разъединители силовые

QF

Выключатель автоматический

R

Резисторы

RK

Терморезистор

RP

Потенциометр

RS

Шунт измерительный

RU

Варистор

RR

Реостат

S

Устройство коммутации в цепях управления, сигнализации и измерительных цепях

SA

Выключатель или переключатель

SB

Выключатель кнопочный

SF

Выключатель автоматический

Т

Трансформаторы, автотрансформаторы

TA

Трансформатор тока

TV

Трансформаторы напряжения

U

Преобразователи

UB

Модулятор

UR

Демодулятор

UG

Блок питания

UF

Преобразователь частоты

V

Приборы электровакуумные и полупроводниковые

VD

Диод, стабилитрон

VL

Прибор электровакуумный

VT

Транзистор

VS

Тиристор

Х

Соединители контактные

ХА

Токосъемник

ХР

Штырь

XS

Гнездо

XW

Соединитель высокочастотный

Y

Устройства механические с электромагнитным приводом

YA

Электромагнит

YAB

Замок электромагнитный

Маркировка импортных диодов

Диод


Анод
Катод
p-n переходПолупроводниковый диодМышьяка
Индия

На этом рисунке видно, что если диод включить Анодом
к плюсу питания и Катодом
к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом
к минусу, а Катодом
к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.

Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:

В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.

Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные ~ 800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.

Читайте так же:  Как сделать абажур из ниток и шарика

Плоскостной и точечный диод

Характеристики и параметры диодов

В зависимости от применяемого материала, диоды могут быть выполнены из кремния или германия. Кроме того, для их изготовления используется фосфид индия и арсенид галлия. Диоды из германия обладают более высоким коэффициентом передачи, по сравнению с кремниевыми изделиями. У них большая проводимость при сравнительно невысоком напряжении. Поэтому, они широко используются в производстве транзисторных приемников.

В зависимости от технологических признаков и конструкции, диоды бывают плоскостными или точечными, импульсными, универсальными или выпрямительными. Среди них следует отметить отдельную группу, куда входят , фотодиоды и тиристоры.

Характеристики диодов определяются такими параметрами, как прямые и обратные токи и напряжения, диапазоны температур, максимальное обратное напряжение и другие значения. В зависимости от этого, производится нанесение соответствующих обозначений.

Основные термины и определения

К полупроводниковым диодам принято относить ряд классов, по праву выделяемые в отдельные семейства. Это варикапы, стабилитроны, светодиоды и прочее. Общим становится наличие единственного p-n-перехода. Ламповые выпрямители также называют диодами. В указанном контексте и применяется эпитет полупроводниковые, чтобы отметить наличие p-n-перехода.

Маркировка диодов

Электрический диод

Диоды ценятся за ярко выраженные выпрямляющие свойства. Ток проходит через p-n-переход в одном направлении, что решает большой спектр технических задач. Массово применяются выпрямительные свойства полупроводников и в интегральных схемах, включая кристаллы. Хотя в процессорах по большей части на подложке формируются транзисторы, рассматриваемые как два включённых навстречу полупроводниковых диода. Избыточность оправдывается унификацией технологического цикла.

Выпрямительные свойства полупроводниковых диодов открыты на примере сульфида меди. Об этом нетрудно прочитать в исторической справке, приведённой ниже. Вдобавок полупроводниковые диоды создаются на основе любого природного минерала, неметаллов IV, V и VI групп, различных оксидов, сплавов, части органических красителей (для светодиодов используется указанный класс веществ).

Рабочие характеристики диода.

На графиках, характеризующих работу диода, прямой ток обозначают Iпр., а обратный Iобр. А если диод включить в цепь с переменным током? Он будет открываться при положительных полупериодах на аноде, свободно пропуская ток одного направления — прямой ток Iпр., и закрываться при отрицательных полупериодах на аноде, почти не пропуская ток противоположного направления — обратный ток Iобр. — Эти свойства диодов и используют в выпрямителях для преобразования переменного тока в постоянный.

Напряжение, при котором диод открывается и через него идет прямой ток, называют прямым (пишут Uпp.) или пропускным, а напряжение обратной полярности, при котором диод закрывается и через него идет обратный ток, называют обратным (пишут Uобр.) или непропускным.

При прямом напряжении сопротивление диода хорошего качества не превышает нескольких десятков ом, при обратном же напряжении его сопротивление достигнет десятков, сотен килоом и даже мегаом. В этом нетрудно убедиться, если обратное сопротивление диода измерить омметром. Внутреннее сопротивление открытого диода — величина непостоянная и зависит от прямого напряжения, приложенного к диоду: чем больше это напряжение, тем больше прямой ток через диод, тем меньше его пропускное сопротивление. Судить о сопротивлении диода можно по падению напряжения на нем и току через него. Так, например, если через диод идет прямой ток Iпр. = 100 мА (0,1 А) и при этом на нем падает напряжение 1В, то (по закону Ома) прямое сопротивление диода будет: R = 1 / 0,1 = 10 Ом. В закрытом состоянии на диоде падает почти все прикладываемое к нему напряжение, обратный ток через него чрезвычайно мал, а сопротивление, следовательно, велико.

Вольт-амперная характеристика (ВАХ)

Зависимость тока через диод от значения и полярности приложенного к нему напряжения изображают в виде кривой, называемой вольт — амперной характеристикой диода (ВАХ).

Такую характеристику вы видите на (рис. 2). Здесь по вертикальной оси вверх отложены значения прямого тока Iпр., а внизу — обратного тока Iобр. По горизонтальной оси вправо обозначены значения прямого напряжения Uпp., влево — обратного напряжения. На такой вольт — амперной характеристике различают прямую ветвь (в правой верхней части), соответствующую прямому току через диод, и обратную ветвь вольт — амперной характеристики, соответствующую обратному току. Из нее видно, что ток Iпр. диода в сотни раз больше тока Iобр. Так, например, уже при прямом напряжении Uпp. = 0,5 В ток Iпр. равен 50 мА (точка (а) на характеристике), при Uпp. = 1 В он возрастает до 150 мА (точка (б) на характеристике), а при обратном напряжении Uобр. = 100 В обратный ток Iобр. не превышает 0,5 мА (500 мкА). Подсчитайте, во сколько раз при одном и том же прямом и обратном напряжении прямой ток больше обратного.

Маркировка диодов

Рис. 2 Вольт — амперная характеристика полупроводникового диода.

Маркировка диодов

Рис. 3 Схематическое устройство (а) и внешний вид некоторых плоскостных диодов (б).

Прямая ветвь идет круто вверх, как бы прижимаясь к вертикальной оси. Она характеризует быстрый рост прямого тока через диод с увеличением прямого напряжения. Обратная же ветвь, как видите, идет почти параллельно горизонтальной оси, характеризуя медленный рост обратного тока. Наличие заметного обратного тока — недостаток диодов. Примерно такие вольт — амперные характеристики имеют все германиевые диоды. Вольт — амперные характеристики кремниевых диодов чуть сдвинуты вправо. Объясняется это тем, что германиевый диод открывается и начинает проводить ток при прямом напряжении 0,1-0,2 В, а кремниевый при 0,5-0,6 В. Прибор, на примере которого я рассказал вам о свойствах диода, состоял из двух пластин полупроводников разной электропроводности, соединенных между собой плоскостями. Подобные диоды называют плоскостными.

Светодиоды и оптоэлектроника

Раз диод излучает свет, значит обозначение светодиода должно быть с указанием этой особенности, поэтому к обычному диоду добавили две исходящие стрелки.

Маркировка диодовОбозначение светодиодов на электрической схеме

В реальности есть много разных способов определить полярность, подробнее об этом есть целая статья. Ниже, для примера, распиновка зеленого светодиода.

Читайте так же:  Регулировка яркости LED. Все о диммерах для светодиодных ламп

Обычно у светодиода маркировка выводов выполняется либо меткой, либо ножками разной длины. Короткая ножка – это минус.

Маркировка диодовРаспиновка зеленого светодиода

Фотодиод, прибор обратный по своему действию от светодиода. Он изменяет состояние своей проводимости в зависимости от количества света, попадающего на его поверхность. Его обозначение:

Маркировка диодовФотодиод BPD-BQA914

Такие приборы используются в телевизорах, магнитофонах и прочей аппаратуре, которая управляется пультом дистанционного управления в инфракрасном спектре. Такой прибор можно сделать, спилив корпус обычного транзистора.

Часто применяется в датчиках освещенности, на устройствах автоматического включения и выключения осветительных цепей, например таких:

Маркировка диодовДатчик освещения

Оптоэлектроника – область которая получила широкое распространения в передаче данных и устройствах связи и управления. Благодаря своему быстродействию и возможности осуществить гальваническую развязку, она обеспечивает безопасность для питаемых устройств в случае возникновения высоковольтного скачка на первичной стороне. Однако не в таком виде как указано, а в виде оптопары.

Маркировка диодовСхема с оптопарой

В нижней части схемы вы видите оптопару. Включение светодиода здесь происходит замыканием силовой цепи с помощью оптотранзистора в цепи светодиода. Когда вы замыкаете ключ, ток идёт через светодиод в оптопаре, в нижнем квадрате слева. Он засвечивается и транзистор, под действием светового потока, начинает пропускать ток через светодиод LED1, помеченный зеленым цветом.

Такое же применение используется в цепях обратной связи по току или напряжению (для их стабилизации) многих блоков питания. Сфера применения начинается от зарядных устройств мобильных телефонов и блоков питания светодиодных лент, до мощных питающих систем.

Диодов существует великое множество, некоторые из них похожи по своим характеристикам, некоторые имеют совершенно необычные свойства и применения, их объединяет наличие всего лишь двух функциональных выводов.

Вы можете встретить эти элементы в любой электрической схеме, нельзя недооценивать их важность и характеристики. Правильный подбор диода в цепи снаббера, например, может значительно повлиять на КПД и тепловыделение на силовых ключах, соответственно на долговечность блока питания

Если вам было что-нибудь непонятно – оставляйте комментарии и задавайте вопросы, в следующих статьях мы обязательно раскроем все непонятные вопросы и интересные моменты!

Специфичные диоды

Выпрямительный диод мы уже рассмотрели, давайте взглянем на диод Зенера, который в отечественной литературе называют – стабилитрон.

Маркировка диодовОбозначение стабилитрона (диод Зенера)

Внешне он выглядит как обычный диод – черный цилиндр с меткой на одной из сторон. Часто встречается в маломощном исполнении – небольшой стеклянный цилиндр красного цвета с черной меткой на катоде.

Обладает важным свойством – стабилизация напряжения, поэтому включается параллельно нагрузке в обратном направлении, т.е. к катоду подключается плюс питания, а анод к минусу.

Следующий прибор – варикап, принцип его действия основан на изменении величины барьерной емкости, в зависимости от величины приложенного напряжения. Используется в приемниках и в цепях, где нужно производить операции с частотой сигнала. Обозначается как диод, совмещенный с конденсатором.

Маркировка диодовВарикап — обозначение на схеме и внешний вид

Динистор – обозначение которого выглядит как диод, перечеркнутый поперек. По сути так и есть – он из себя представляет 3-х переходный, 4-х слойный полупроводниковый прибор. Благодаря своей структуре обладает свойством пропускать ток, при преодолении определенного барьера напряжения.

Например, динисторы на 30В или около того часто используются в лампах «энергосберегайках», для запуска автогенератора и других блоках питания, построенных по такой схеме.

Обозначение динистора

Резисторы

К резисторам относятся радиодетали, обладающие строго определенным сопротивление протекающему через них электрическому току. Данная функция предназначена для понижения тока в цепи. Например, чтобы лампа светила менее ярко, питание на нее подается через резистор. Чем выше сопротивление резистора, тем меньше будет свечение лампы. У постоянных резисторов сопротивление остается неизменным, а переменные резисторы могут изменять свое сопротивление от нулевого значения до максимально возможной величины.

Маркировка диодов

Каждый постоянный резистор обладает двумя основными параметрами – мощностью и сопротивлением. Значение мощности указывается на схеме не буквенными или цифровыми символами, а с помощью специальных линий. Сама мощность определяется по формуле: P = U x I, то есть равна произведению напряжения и силы тока

Данный параметр имеет важное значение, поскольку тот или иной резистор может выдержать лишь определенное значение мощности. Если это значение будет превышено, элемент просто сгорит, так как во время прохождения тока по сопротивлению происходит выделение тепла

Поэтому на рисунке каждые линии, нанесенные на резистор, соответствуют определенной мощности.

Маркировка диодов

Существуют и другие способы обозначения резисторов на схемах:

Маркировка диодов

  1. На принципиальных схемах обозначается порядковый номер в соответствии с расположением (R1) и значение сопротивления, равное 12К. Буква «К» является кратной приставкой и обозначает 1000. То есть, 12К соответствует 12000 Ом или 12 килоом. Если в маркировке присутствует буква «М», это указывает на 12000000 Ом или 12 мегаом.
  2. В маркировке с помощью букв и цифр, буквенные символы Е, К и М соответствуют определенным кратным приставкам. Так буква Е = 1, К = 1000, М = 1000000. Расшифровка обозначений будет выглядеть следующим образом: 15Е – 15 Ом; К15 – 0,15 Ом – 150 Ом; 1К5 – 1,5 кОм; 15К – 15 кОм; М15 – 0,15М – 150 кОм; 1М2 – 1,5 мОм; 15М – 15мОм.
  3. В данном случае используются только цифровые обозначения. Каждое включает в себя три цифры. Первые две из них соответствуют значению, а третья – множителю. Таким образом, к множителям относятся: 0, 1, 2, 3 и 4. Они означают количество нулей, добавляемых к основному значению. Например, 150 – 15 Ом; 151 – 150 Ом; 152 – 1500 Ом; 153 – 15000 Ом; 154 – 120000 Ом.

Соединение резисторов

В электронике и электротехнике довольно часто используются соединения резисторов в различных комбинациях и конфигурациях. Для большей наглядности следует рассматривать отдельный участок цепи с последовательным, параллельным и смешанным соединением.

Маркировка диодов

При последовательном соединении конец одного резистора соединяется с началом следующего элемента. Таким образом, все резисторы подключаются друг за другом, и по ним протекает общий ток одинакового значения. Между начальной и конечной точкой существует только один путь для протекания тока. С возрастанием количества резисторов, соединенных в общую цепь, происходит соответствующий рост общего сопротивления.

Читайте так же:  Как выбрать светодиодный светильник для освещения улицы

Маркировка диодов

Параллельным считается такое соединение, когда начальные концы всех резисторов объединяются в одной точке, а конечные выходы – в другой точке. Течение тока происходит по каждому, отдельно взятому резистору. В результате параллельного соединения с увеличением числа подключенных резисторов, возрастает и количество путей для протекания тока. Общее сопротивление на таком участке уменьшается пропорционально количеству подключенных резисторов. Оно всегда будет меньше, чем сопротивление любого резистора, подключенного параллельно.

Маркировка диодов

Чаще всего в радиоэлектронике используется смешанное соединение, представляющее собой комбинацию параллельного и последовательного вариантов.

На представленной схеме параллельно соединяются резисторы R2 и R3. Последовательное соединение включает в себя резистор R1, комбинацию R2 и R3 и резистор R4. Для того чтобы рассчитать сопротивление такого соединения, вся цепь разбивается на несколько простейших участков. После этого значения сопротивлений суммируются и получается общий результат.

Обозначение радиодеталей на схеме

Обозначение радиодеталей на схеме

В данной статье приведен внешний вид и схематическое обозначение радиодеталей

Каждый наверно начинающие радиолюбитель видел и внешне радиодетали и возможно схемы,но что чем является на схеме приходится долго думать или искать,и только где то он может прочитает и увидит новые для себя слова такие как резистор, транзистор, диод и прочее.А как же они обозначаются.Разберем в данной статье.И так поехали.

1.Резистор

Чаще всего на платах и схемах можно увидеть резистор,так как их по количеству на платах больше всего.

Резисторы бывают как постоянные,так и переменные(можно регулировать сопротивление с помощью ручки)

Одна из картинок постоянного резистора ниже и обозначение постоянного и переменного на схеме.

Маркировка диодов

А где переменный резистор как выглядет. Это еще картиночка ниже.Извиняюсь за такое написание статьи.

2.Транзистор и его обозначение

Много информации написано, о функциях ихних, но так как тема о обозначениях.Поговорим об обозначениях.

Транзисторы бывают биполярными,и полярными, пнп и нпн переходов.Все это учитывается при пайке на плату, и в схемах.Увидите рисунок,поймете

Обозначение транзистора нпн перехода npn

Маркировка диодов

Э это эммитер, К это коллектор, а Б это база.Транзисторы pnp переходов будет отличатся тем что стрелочка будет не от базы а к базе.Для более подробного еще одна картинка

Маркировка диодов

Есть так же кроме биполярных и полевые транзисторы, обозначение на схеме полевых транзисторов похожи, но отличаются.Так как нет базы эмиттера и коллектора, а есть С — сток, И — исток, З — затвор

Маркировка диодов

И напоследок о транзисторах как же они выглядат на самом деле

Маркировка диодов

Общем если у детали три ножки, то 80 процентов того что это транзистор.

Если у вас есть транзистор и незнаете какого он перехода и где коллектор, база, и вся прочая информация,то посмотрите в сравочнике транзисторов.

Конденсатор, внешний вид и обозначение

Конденсаторы бывают полярные и неполярные, в полярных на схеме приресовывают плюс, так как он для постоянного тока, а неполярные соответствено для переменного.

Они имеют определенную емкость в мКф (микрофарадах) и расчитаны на определенное напряжение в вольтах.Все это можно прочитать на корпусе конденсатора

Маркировка диодов

Микросхемы, внешний вид обозначение на схеме

Уфф уважаемые читатели, этих существует просто огромное количество в мире, начинаю от усилителей и заканчивая телевизорами

Ну пару слов скажу.Смотреть их так же как и транзисторы в справочниках.У них от 8 и выше выводов ножек.С какой ножки отсчитывать смотрится тоже в справочнике.А на схеме самой указывают первую и последнюю ножку в обозначении.

Диод, обозначение на схеме

Сказав в кратце о этой радиодетали, скажу что она пропускает ток в одну сторону и непропускает в другую.Применяются самое распространеное для выпрямление тока, делают из переменного — постоянный

Маркировка диодов

Насчет обозначений остальных деталей которых нет в этой статье я буду еще возращатся.

автор Шепелев Алексей

Постоянные резисторы

Название постоянных резисторов связано с их номинальным сопротивлением, которое остается неизменным в течение всего периода эксплуатации. Они различаются между собой в зависимости от конструкции и материалов.

Маркировка диодов

Проволочные элементы состоят из металлических проводов. В некоторых случаях могут использоваться сплавы с высоким удельным сопротивлением. Основой для намотки проволоки служит керамический каркас. Данные резисторы обладают высокой точностью номинала, а серьезным недостатком считается наличие большой собственной индуктивности. При изготовлении пленочных металлических резисторов, на керамическое основание напыляется металл, обладающий высоким удельным сопротивлением. Благодаря своим качествам, такие элементы получили наиболее широкое распространение.

Конструкция угольных постоянных резисторов может быть пленочной или объемной. В данном случае используются качества графита, как материала с высоким удельным сопротивлением. Существуют и другие резисторы, например, интегральные. Они применяются в специфических интегральных схемах, где использование других элементов не представляется возможным.

Обозначение стабилитрона, включение стабилитрона, диод Зенера

Cтабилитрон используется для стабилизации напряжения (например, в стабилизированных источниках питания).

Включение стабилитрона

Включение стабилитрона (его ещё называют диод Зенера) показано на рисунке. Включение стабилитрона на первый взгляд нелогично. Стабилитроны разработаны таким образом, чтобы включались как бы «наоборот». При подаче на них обратного напряжения происходит «пробой» и напряжение между их выводами остаётся неизменным. Последовательно обязательно должен быть включён резистор для ограничения проходящего тока через стабилитрон и обеспечения падения «лишнего» напряжения от выпрямителя.

Каждый стабилитрон имеет своё напряжение пробоя (стабилизации) и свой рабочий ток. Исходя из этого тока рассчитывается номинал резистора, включённого последовательно со стабилитроном. На импортных стабилитронах напряжение стабилизации напечатано на корпусе стабилитрона. Обозначение диодов — стабилитронов начинается с BZX… или BZY… Их напряжение стабилизации (пробоя) напечатано с буквой V вместо десятичной запятой. Таким образом, 3V9 означает 3.9 вольта.

Минимальное напряжение стабилизации, на которое существуют стабилитроны, 2 В.

Последовательное соединение стабилитронов

Последовательное соединение стабилитронов делают в тех случаях, когда надо получить стабилизированное напряжение, на которое не существует стабилитронов (или нет в наличии). Как правило в высоковольтных стабилизаторах напряжения устанавливают несколько последовательно соединённых стабилитронов. Общее напряжение стабилизации будет равно сумме напряжений стабилизации каждого стабилитрона. Желательно соединять последовательно только однотипные стабилитроны.

Список источников

  • slarkenergy.ru
  • electric-220.ru
  • SvetodiodInfo.ru
  • elektrikaetoprosto.ru
  • xn—-7sbeb3bupph.xn--p1ai
  • acost.ru
  • www.radioingener.ru
  • VashTehnik.ru
Ссылка на основную публикацию